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Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder involving heterogeneous clinical manifestations and
numerous susceptibility genes. Several findings evidence the critical role of inflammasomes in the predisposition to autoimmune
diseases and in SLE.We investigated whether inflammasome polymorphins could affect susceptibility to develop and/or severity
SLE. Moreover, differences in inflammasome activation in peripheral blood were also evaluated in SLE patients and controls.
The distribution of 13 SNPs in eight inflammasome genes was evaluated. To assess inflammasome priming in peripheral blood
monocytes of SLE and controls, differential expression of selected inflammasome genes and IL-1ß production was analyzed in
resting condition as well as after LPS and ATP stimulation. Results showed that the gain-of-function variant rs10754558
(NLRP3) was significantly more frequent in SLE patients with nephritis, reinforcing the concept of a key role of NLRP3
inflammasome not only in SLE but also especially in kidney disease. SLE monocytes in resting condition showed a higher level
of IL-1ß expression and produced higher levels of IL-1ß when stimulated with LPS+ATP comparing to controls. The stimulation
induced a significant expression of NLRP1, AIM2, CASP1, and IL1B genes, suggesting that the NLRP1 inflammasome is
responsible for the IL-1ß production observed in monocytes. These data emphasized once more the important contribution of
inflammasome in SLE-associated inflammation.
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Introduction

Systemic lupus erythematosus (SLE) is a complex autoim-
mune disease that predominantly affects women of childbear-
ing age. SLE hallmark is the generation of autoantibodies that
react with self-nuclear and cytoplasmic antigens, culminating
in immunocomplex deposition in several organs, inducing cell
death and organ failure (Davidson and Diamond 2001; Tsokos
et al. 2007). Although under intense investigations, the genetic
basis of human SLE is still not fully understood (Ghodke-
Puranik and Niewold 2015; Tsao 2003; Croker and
Kimberly 2005).

Several studies indicate that abnormal activation of genes
related to the inflammatory response, resulting in an altered
activation of IL-1ß and/or NF-kB, may contribute to the path-
ogenesis of autoimmune disorders with a strong inflammatory
component, as observed in SLE (Shinkai and TH 2008; Shaw
et al. 2011a; Aksentijevich et al. 2007; Magitta et al. 2009;
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Yang et al. 2015a; Kahlenberg and Kaplan 2014a). In the last
few years, the innate immune signaling complex, called
inflammasome, has garnered support for a role in triggering
and maintaining SLE (Kahlenberg and Kaplan 2014a).
Different innate immune cytoplasmic receptors, belonging to
Nod-like Receptors/NLRs (i.e., NLRP1, NLRP3, NLRC4) or
PYHIN (i.e., AIM2, IFI16) families, have been described as
able to assemble an inflammasome in response to pathogen-
or danger-associated molecular patterns (PAMPs or DAMPs)
leading to caspase-1 activation and consequent cleavage and
secretion of pro-inflammatory cytokines IL-1β and IL-18
(Shaw et al. 2011b; Man and Kanneganti 2015; Ito et al.
2014).

Several lupus-associated DAMPs (i.e., generation of
reactive oxygen species due to inefficient clearance of
cellular debris; impaired clearance of neutrophil extracel-
lular trap (NET); accumulation of cytosolic self DNA)
could be recognized by inflammasome receptors conse-
quently inducing an inflammatory response (Yang and
Chiang 2015).

NLRP3 inflammasome activation has been described as
increase in lupus macrophages (Kahlenberg et al. 2013) and
two recent studies suggested that this induction appeared to
be, at least partially, caused by lupus-specific autoantibodies
(Zhang et al. 2016; Shin et al. 2013a). NLRP3 inflammasome
plays an important role also for the progression of SLE, con-
tributing to the development of nephritis (Ka et al. 2015; Li
et al. 2015).

Recently, it was demonstrated that the hyper-expression of
NLRP3 in myeloid cells induces a severe disease in an exper-
imental model of lupus (Lu et al. 2017). Even if NLRP3 re-
mains the first candidate DAMPs’ receptor involved in SLE
pathogenesis, other inflammasome components have been
pointed out as possible contributing factors. Our research
group demonstrated that gain-of-function polymorphisms in
the receptor NLRP1 gene were associated to SLE and SLE-
associated nephritis, rash, and arthritis (Pontillo et al. 2012).
Accordingly, a deregulation not only of NLRP3 but also of
NLRP1 inflammasomes has been reported in patients with
SLE (Yang et al. 2014).

Accordingly, a deregulation not only of NLRP3 but also of
NLRP1 inflammasomes has been reported in patients with
SLE (Yang et al. 2014). Even though, the role of
inflammasome in the pathogenesis of SLE should be more
deeply elucidated (Yang et al. 2015b; Camargo et al. 2004;
Wang et al. 2013; Wen et al. 2014). So, to better understand
the possible impact of inflammasome gene disregulation in
SLE development and its clinical phenotype, we analyzed a
selected panel of single-nucleotide polymorphisms (SNPs) in
NLRP1, NLRP3, NLRC4, AIM2, CARD8, CASP1, IL1B, and
IL18 genes; moreover, inflammasome activation was evaluat-
ed in monocytes from SLE patients to further characterize
inflammasome profile in these individuals.

Materials and methods

Subject

We recruited 132 SLE patients (129 women/3 men, mean age
37.1 years ± 10.5) and 154 healthy controls (HC) (125
women/29 men, mean age 33.5 years ± 13.4) at the Clinical
Hospital of Federal University of Pernambuco (HC-UFPE),
from metropolitan region of Recife (Pernambuco, Brazil).
Patients were classified according to the criteria of the
American College of Rheumatology (ACR) (Hochberg
1997) and in the cumulative organic damage index (SLICC/
ACR) or disease activity index (SLEDAI). The control group
was composed of healthy volunteers without SLE or any other
autoimmune diseases, or other problems that may impair the
immune system. Subjects with diabetes mellitus, renal or he-
patic dysfunction, acute or chronic inflammatory disease, can-
cer, and infection diseases were excluded from the study.
Subjects were chosen randomly in the population, sex-, age-,
and ethnicity-matched and from the same geographical area of
the patients (metropolitan Recife, PE). The demographic, clin-
ical, and laboratory profiles of patients and controls are report-
ed in Table 1.

The following laboratory and clinical data regarding the
SLE patients were collected: hematological alterations (hemo-
lytic anemia, leucopenia, lymphopenia, thrombocytopenia),
immunological alterations (Anticardiolipin, Anti-Sm, Anti-

Table 1 Demographic, clinical, and laboratory data of Brazilian case/
control cohort of SLE. Data are expressed as number of individuals and
percentage or means ± standard deviation. ANA: antinuclear antibody test

Characteristic SLE
(n = 132)

HC
(n = 154)

Sex, male/female; n (%) 3 (2)/129 (98) 29 (19)/125 (81)

Age, years; mean ±SD 37.1 ± 10.5 33.5 ± 13.4

Lupus blood tests n (%)

Anti-dsDNA positiveness 37 (27%)

ANA positiveness 114 (82%)

Immunologic alterationsa 44 (32%)

Hematologic alterationsb 82 (59%)

Clinical manifestations n (%)

Cutaneous manifestations 89 (64%)

Photosensitivity 85 (61%)

Lupus arthritis 88 (63%)

Oral ulcers 29 (20%)

Nephritic disorders 58 (42%)

Neuropsychiatric disordersc 12 (8%)

aAnticardiolipin, anti-Sm, anti-RNP, anti-Ro/SSA, anti-La/SSB
bHemolytic anemia, leucopenia, lymphopenia, thrombocytopenia
c Seizures, headache, psychosis
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RNP, Anti-Ro/SSA, Anti-La/SSB), presence of antinuclear
antibodies (ANA), presence of anti-double-strand DNA anti-
body (anti-ds-DNA), antiphospholipid syndrome (APS), pho-
tosensitivity, serositis (pleuritis, pericarditis), Lupus arthritis,
cutaneous manifestations (malar or discoid rashes), oral ul-
cers, neuropsychiatric disorder (seizures, headache, psycho-
sis), Raynaud phenomenon, and nephritic disorder. Patients
were classified as having nephritic disease based on laboratory
parameters, specifically changes in urine summary and 24-h
proteinuria, as follows: persistent proteinuria (> 0.5 g/day or
3+) or abnormal cylindrury. All the participants provided a
written informed consent approved by the local Research
Ethics Committee (CAAE 03065312.3.0000.5208).

DNA isolation and genotyping

Genomic DNA from SLE patients and controls was extracted
from peripheral blood using the DNAWizard Genomic DNA
Purification Kit (Promega, Madison, WI, USA).

Thirteen SNPs were selected within NLRP1, NLRP3,
NLRC4, AIM2, CARD8, CASP1, IL1B, and IL18 genes ac-
cording to previously reported association studies (Pontillo
et al. 2010; Pontillo et al. 2011) and/or their functional effect
on protein activity or mRNA stability (Roberts et al. 2010;
Hitomi et al. 2009), and minor allele frequency (MAF; >
5%) (Supplementary File 1).

SNPs were genotyped using allele-specific TaqMan assays
(ThermoFisher Scientific, California, USA) and qPCR in a
ABI7500 Real-Time PCR equipment (Thermo Fisher
Scientific, California, USA). SDS software v2.3 (Thermo
Fisher Scientific) was used for allelic discrimination.

Statistical analysis

SNPs distribution in case/control cohort as well as in SLE
groups (stratified according to clinical presentation) was ana-
lyzed bymultivariate association based on general linear mod-
el (GLM) adjusted for confounders variables (age, sex, race)
using statistical program R package “SNP-association” ver-
sion 1.5–2. Genetic analyses were performed taking into ac-
count co-dominant, dominant, recessive, and overdominant
models for all SNPs. The Haploview software was used to
investigate the linkage disequilibrium (LD) and to derive the
haplotypes. A significant threshold of p = 0.004 was assumed
after Bonferroni correction for multiple SNPs analysis (p =
0.05/n; n = 13 SNPs).

Inflammasome gene expression assays

Subjects

We investigated the relative mRNA expression of IL-1β,
NLRP1, NLRP3, NLRC4, AIM2, ASC/PYCARD, and CASP1

genes in peripheral blood–derived monocytes among subjects
within the case/control study (10 SLE patients and 10 healthy
individuals) and if their expression differed between the basal
condition and after LPS+ATP stimulation.

All the patients selected for gene expression study had a
remission for SLE. The healthy individuals were sex-, age-,
and ethnicity-matched according to patients and did not pres-
ent recent illness (autoimmune diseases, diabetes mellitus, re-
nal or hepatic dysfunction, acute or chronic inflammatory dis-
ease, cancer, infection diseases) or any pharmacological treat-
ment before blood collection.

Peripheral blood monocytes culture

Heparinized whole blood samples were obtained from ten
post-menopausal SLE female patients (mean age 42.6 ±
12 years) and ten healthy post-menopausal female controls
(HC) (mean age 57.5 ± 8.14 years). To establish a condition
where both patients and controls ex vivo cell cultures would
clear up from no reported inflammatory responses (in HC),
cells were cultured overnight and after this period medium
was changed. This procedure allowed cells to metabolize
any ex vivo conditions before initiate inflammasome stimuli.
To stimulate, we exposed 0.5 × 106 peripheral blood mono-
cytes with 1 μg/ml lipopolysaccharide (LPS; Sigma-Aldrich)
for 4 h and then with 1 mM adenosine triphosphate (ATP;
Sigma-Aldrich) for 15′ in RPMI-1640 + 10% fetal bovine
serum/FBS (ThermoFisher Scientific). Inflammasome genes
modulation was evaluated in monocytes by real-time quanti-
tative PCR and gene expression specific Taqman assays
(Thermo Fisher Scientific).

IL-1β measurement

The secreted IL-1βwas measured with ELISA (IL-1β assays,
R&D systems, USA). Results were expressed in picograms
per milliliter. Secretion differences between patients and con-
trols were tested with Mann-Whitney U test with SPSS 15.0
(SPSS, Inc., Chicago, IL, USA).

Relative gene expression analysis

Total RNA was isolated using the RNAqueous micro kit
(Ambion, Thermofisher Scientific, USA). RNA integrity
was assessed by gel electrophoresis and quantification by
Nanodrop 2000 (ThermoScientific). After retro-transcription
of 0.5 μg total RNA (Super Script™ III Reverse Transcriptase
(Invitrogen, Thermoscientific)), IL1B and selected
inflammasome genes, namely NLRP1, NLRP3, NLRC4,
AIM2, ASC/PYCARD, and CASP1 were amplified with
TaqMan® gene-specific assays and ABI Prism 7500 Real-
Time PCR equipment. Gene modulation in SLE monocytes
compared to HC and stimulated (LPS) versus unstimulated
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resting (R) monocytes were calculated as 2exp-ΔCt ± standard
deviation (fold change - FC). The SDS 2.3 software was used
to obtain cycle quantification (Cq) values for relative gene
expression analysis according to FC method (Schmittgen
and Livak 2008). GAPDH was the reference gene used for
normalization (ΔCt).

Statistical analysis

The comparison among expression levels of studied genes and
patients and healthy control group were calculated using
Student’s t or Mann-Whitney U tests as appropriate.
GraphPad Prism 6.0 (GraphPad Software Inc., San Diego,
CA) was used for statistical analyses and differences were
accepted as significant for p values < 0.05.

Results

Genotyping study

We genotyped 13 SNPs located at eight inflammasome genes
in 132 SLE unrelated patients and 154 healthy controls.
Genotypes distribution was in Hardy-Weinberg equilibrium
(p > 0.05). None of the studied polymorphisms resulted dif-
ferently distributed in cases and controls (Table 2).

Linkage disequilibrium analysis revealed that IL1B
SNPs rs1143643 and rs1143634 were in strong LD
(D’ = 100), whereas NLRP1 rs12150220 and rs2670660,
as well as NLRP3 rs10754558 and rs35829419 in moder-
ate LD (D´ = 78 and D’ = 0.86, respectively). The distri-
bution of IL1B, NLRP1, and NLRP3 haplotypes was not

significantly different between cases and controls
(Supplementary File 2).

Then we analyzed SNPs distribution according to SLE
clinical presentation: none of the studied SNPs resulted
significantly associated to clinical features or laboratory
parameters after Bonferroni correction with the exception
of NLRP3 rs10754558 which correlated with lupus ne-
phritis (Table 3).

SLE individuals carrying rs10754558 minor G allele
were significantly more frequent (p = 0.0004) in patients
with nephritis (0.68) than in patients without kidney in-
volvement (0.36), according to a dominant model of in-
heritance (C/G + G/G; OR = 3.88; 95%CI = 1.80–8.40).
This result was poorly affected by confounders variables:
age, sex, and race, (padj = 0.0005; ORadj = 4.0; 95%CI =
1.79–8.92).

Of note, some SNPs resulted differently distributed ac-
cording to clinical or laboratory data (p < 0.05), however,
the analysis did not reach the statistical significance after
Bonferroni correction (Table 3). NLRP1 rs2670660 was
less frequent in SLE patients positive for anti-DNA anti-
bodies (0.08 versus 0.29) according to a recessive model
of inheritance (G/G; padj = 0.007; ORadj = 0.22). CARD8
rs2043211 resulted more frequent in SLE patients with
cutaneous manifestations (0.15 versus 0.02) according to
a recessive model of inheritance (T/T; padj = 0.022;
ORadj = 7.34), and less frequent in SLE with hematologic
involvement (0.27 versus 0.49) according to an over-
dominant model of inheritance (A/T; padj = 0.024;
ORadj = 0.37). IL1B rs1143643 was more frequent in
SLE patients with photosensitivity (0.67 versus 0.44) ac-
cording to a dominant model of inheritance (C/T + T/T;
padj = 0.009; ORadj = 2.76). NLRC4 rs455060 was more

Table 2 Association results for case/control analysis. Inflammasome
SNPs genotypes distribution in SLE patients (SLE) and healthy controls
(HC) was analyzed by general linear model (GLM). Genotypes

distribution in patients, p value and p value adjusted for sex, age, and
race are reported. p value < 0.05 are underlined

Gene SNP ID Genotypes SLE
(n = 132)

HC
(n = 154)

p padj

NLRP1 rs2670660 A/A-A/G-G/G 43-62-19 47-66-22 0.985 0.940

NLRP1 rs12150220 A/A-A/T-T/T 68-47-9 75-55-16 0.607 0.860

NLRP3 rs35829419 C/C-C/A-A/A 126-6-0 143-9-2 0.609 0.633

NLRP3 rs10754558 C/C-C/G-G/G 61/60/11 60/64/30 0.012 0.074

NLRC4 rs455060 A/A-A/G-G/G 58-51-16 59-69-21 0.526

AIM2 rs2276405 C/C-C/T-TT 112-5-0 117-6-0 1.0

AIM2 rs35130877 T/T-G/T-T/T 126-0-0 152-0-0 1.0

CARD8 rs2043211 A/A-A/T-T/T 58-51-6 84-59-7 0.681

CASP1 rs572687 G/G-A/G-A/A 89-32-5 95-44-3 0.439

IL1B rs1143643 C/C-C/T-T/T 60-58-8 67-58-14 0.496

IL1B rs1143634 G/G-A/G-A/A 79-28-7 87-41-6 0.555

IL18 rs1946519 C/C-A/C-A/A 41-53-20 46-60-27 0.876
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frequent in SLE women with neurologic presentation
(0.56 versus 0.20) according to a dominant model of in-
heritance (A/G + G/G; padj = 0.027; ORadj = 5.16).

No significant association with antinuclear antibodies
(ANA) was evidenced, however, a different distribution of
NLRP1 rs2670220, CARD8 rs2043211 was observed.
NLRP1 rs2670220 was less frequent between patients with
immunological alterations (0.08 versus 0.26; padj = 0.011;

ORadj = 0.25). Similarly, CARD8 rs2043211 was less frequent
between patients with immunological alterations (0.01 versus
0.13; padj = 0.013; ORadj = 0.10) (data not shown).

Inflammasome expression analysis

Then, we questioned whether an inflammasome signature
characterizes SLE patients, as reported for other autoimmune
and chronic inflammatory diseases (Shin et al. 2012a). So, we
first evaluated the modulation of inflammasome genes expres-
sion in peripheral blood–derived monocytes of SLE and HC
individuals, and then the production of IL-1β in these cells.

To investigate the hypothesis that the threshold of NLRP
inflammasome responsiveness could be affected in SLE indi-
viduals, we evaluated the inflammasome genes modulation in
monocytes from SLE versus HC. In un-stimulated resting
monocytes we observed a higher expression of IL1B (fold
change: 50.79; p = 0.0212; t = 2.525; df = 18) in SLE patients
compared to HC (Fig. 1); however, we did not observe any
significant modulation in NLRP3, NLCR4, ASC/PYCARD,
AIM2, and CASP1 expression (p > 0.05).

Within each group, LPS+ATP stimulation induced a signif-
icant increased expression of NLRP1 (fold change 5.89; p =
0.0009, t = 4.205, df = 14), CASP1 (fold change 8.68; p =
0.0028, t = 3.427, df = 19), IL1B (fold change 6.37; p =
0.0051, t = 3.162, df = 19), and AIM2 (fold change 14.57;
p = 0.0009, t = 4.207, df = 14 (Fig. 2). These data are

Table 3 Association results stratified for clinical and laboratory data.
Inflammasome SNPs genotypes distribution in SLE patients was
analyzed according to clinical and laboratory variables by general linear
model (GLM). p value and p value adjusted for sex, age, and race are
reported. p value < 0.05 are underlined; p value < 0.004 are indicated in
bold characters. Adjusted p values are reported within brackets

Gene SNP ID Clinical/laboratory data p value

NLRP1 rs2670660 Anti-DNA antibodies 0.008
(0.007)

NLRP3 rs10754558 Nephritis 0.0004
(0.0005)

NLRC4 rs455060 Neurological presentation 0.122
(0.027)

CARD8 rs2043211 Cutaneous manifestations 0.022
(0.022)

CARD8 rs2043211 Hematological involvement 0.036
(0.024)

IL1B rs1143643 Photosensitivity 0.009
(0.008)
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Fig. 1 Modulation of IL1B gene
in monocytes isolated from SLE
and HC individuals in a resting
condition. A total of three out of
10 SLE individuals displayed a
higher steady-state expression of
IL1B transcripts in relation to SLE
patients and HC individuals. IL1B
relative expression (2exp-ΔCt ±
standard deviation) between SLE
individuals (n = 10) and HC (n =
10) showed statistically signifi-
cant difference (p = 0.0212; t =
2.525). SLE: Systemic Lupus
Erythematosus; HC: Healthy
Controls
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compatible with the NLRP1 inflammasome being responsible
for the IL-1ß production observed in monocytes.

As expected, monocytes from SLE patients produced
higher levels of IL-1ß comparing to HC in LPS
(lipopolysaccharide) stimulated monocytes as well as in
LPS+ATP stimulated cells, however, only the last condition
was statistically different (p = 5.6 exp-4) (Fig. 3). Intriguingly,
this effect appeared to be emphasized in the presence of LPS+
ATP, suggesting that the inflammasomes respond actively to
LPS and ATP associated.

Discussion

Recent studies have reported the association of NLRP1,
NLRP3, and IL1B genes with SLE in terms of susceptibility
factors and/or disease severity modulation (Magitta et al.
2009; Pontillo et al. 2012; Wang et al. 2013; Wen et al.
2014). Studies concerning specific polymorphisms in
inflammasome-related genes and the relationships with SLE
susceptibility are necessary to better understand the involve-
ment of these molecules in SLE pathology. Here, we
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Fig. 2 Modulation of IL1B and
inflammasome genes in
monocytes isolated from SLE
individuals and HC individuals
with LPS+ATP stimulation.
Relative expression (2exp-ΔCt ±
standard deviation) between SLE
individuals (n = 10) and HC (n =
10) showed statistically
significant for IL1B (p = 0.0051;
t = 3.162), AIM2 (p = 0.0009; t =
4.207), CASP1 (p = 0.0028; t =
3.427), and NLRP1 (p = 0.0009;
t = 4.205). SLE: Systemic Lupus
Erythematosus; HC: Healthy
Controls

R
S L

E
R
H C

R +
A T

P
S L

E

R +
A T

P
H C

L P
S
S L

E

L P
S
H C

L P
S +

A T
P
S L

E

L P
S +

A T
P
H C

-2 0 0

0

2 0 0

4 0 0

6 0 0

IL
-1

(p
β

g
/m

L
)

Fig. 3 Production of IL-1ß in
monocytes isolated from SLE and
HC individuals. Concentration of
IL-1ß (pg/mL) in supernatants of
monocytes from SLE individuals
(n = 10) and HC (n = 10) in
unstimulated/resting condition or
stimulated with 1 μg/mL LPS for
4 h and 1 mM ATP for 15 min.
Only LPS+ATP condition
showed statistically significant
difference between groups (p =
5.6 exp-4). SLE: Systemic Lupus
Erythematosus; HC: Healthy
Controls; R: Resting condition;
LPS: stimulated with LPS; LPS+
ATP: stimulated with LPS and
ATP
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demonstrated the relation between inflammasome SNPs and
SLE clinical manifestation as well as a chronic expression of
some inflammasome components in monocytes from SLE
patients.

The previously observed association betweenNLRP1 poly-
morphisms and SLE (Li et al. 2015) was not replicated in our
study performed on a different Brazilian group of patients and
controls, even if the frequency of the SNPs in the populations
was similarly distributed in the Southeast of Brazil when com-
paring to Northeast population in Brazil. On the other hand,
the NLRP3 rs10754558 gain-of-function variant associated
with augmented risk to development of lupus nephritis, which
apparently is sustained by NLRP3 inflammasome expression
findings in experimental model using LPS stimulated mono-
cytes from SLE patients and HC (Shin et al. 2012a; Tsai et al.
2011; Zhao et al. 2013; Zhao et al. 2015; Kahlenberg et al.
2011; Huang et al. 2017; Fu et al. 2017).

The gene expression profile of SLE patients showed an
upregulation for IL1B gene in resting condition and for
IL1B, AIM2, CASP1, and NLRP1 genes in LPS+ATP-stimu-
lated monocytes when comparing to healthy individuals, sug-
gesting that cells are dramatically sensitized to ligands and
respond quickly for signs of stimulation.

Immune complexes formed secondary to antibody rec-
ognition of DNA or RNA antigens have been shown to
stimulate inflammasome activation through upregulation
of TLR-dependent activation of NF-kB and subsequent
activation of the NLRP1 and NLRP3 inflammasomes,
producing high amounts of IL-1β (Shin et al. 2012b,
2013b; Levandowski et al. 2013). Thereby, the upregula-
tion of inflammasome components is expected since in
autoimmune diseases there are abundant releases of
DAMPs upon tissue damage, which may activate the
inflammasome (Shin et al. 2013b; Kahlenberg and
Kaplan 2014b). Therefore, besides the excessive IL-1β
secretion, the deregulated activation of these complexes
may exacerbate the cell death, contributing to the inflam-
matory process and its maintenance in SLE disease. Our
findings suggest that SLE monocytes may be dramatically
sensitized to ligands and respond faster for signs of stim-
ulation, contributing to the establishment of the exacerbat-
ed inflammation observed in the disease.

These differences in inflammasome genes expression be-
tween patients and healthy controls are underlined by the re-
sults observed analyzing IL-1β secretion in monocytes super-
natants. In all studied conditions, the SLE monocytes secreted
higher amounts of IL-1β. The exact mechanisms responsible
for the production and secretion of IL-1β remain unclear, but
two signals are traditionally required. The first signal, in our
case LPS, induces the transcription of pro-IL-1β and
inflammasome subunits (Shin et al. 2012b, 2013b). One-
second signal is provided by reduction of intracellular K+
generated by ATP promoting a rapid activation of caspase-1

and then enhancing secretion of mature IL-1β (Perregaux and
Gabel 1998; Perregaux and Gabel 1994).

In conclusion, our results indicate that the inflammasome is
an important player in lupus pathogenesis. SNPs in genes of
inflammasome components are involved in the disease and a
chronic expression of some of them was observed, indicating
a dysfunction of this protein complex in SLE disease.
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